

A-LEVEL Mathematics

MS2B - Statistics 2B

Mark scheme

6360

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Notes for MS2B

- **GN1** There is no allowance for misreads (MR) or miscopies (MC) unless specifically stated in a question.
- **GN2** In general, a correct answer (to accuracy required) without working scores full marks but an incorrect answer (or an answer not to required accuracy) scores no marks.
- **GN3** In general, a correct answer (to accuracy required) without units scores full marks.
- **GN4** When applying AWFW, a slightly inaccurate numerical answer that is subsequently rounded to fall within the accepted range cannot be awarded full marks.
- **GN5** Where percentage equivalent answers are permitted in a question, then penalise by **one accuracy mark** at the first **correct** answer but only if no indication of percentage (eg %) is shown.
- **GN6** In questions involving probabilities, do **not** award **accuracy** marks for answers given in the form of a ratio or odds such as 13/47 given as 13:47 or 13:34.
- **GN7** Accept decimal answers, providing that they have **at least two** leading zeros, in the form $c \times 10^{-n}$ (eg 0.00321 as 3.21×10^{-3}).
- GN8 Where a candidate's response to a part of a question is simply to label the part (eg (d)(i)) with nothing else (ie no attempt at a solution), then this is still treated as a response and marked as 0 rather than NR. Also, deleted work, if not replaced, should be marked and not treated as NR.

Q1	Solution	Mark s	Total	Comments
(a)(i)	$\int_{8}^{16} \frac{1}{160} x dx = \left[\frac{1}{320} x^2\right]_{8}^{16}$	M1		Integration completed, ignore limits Not awarded for work seen in part (b)
	$= \frac{16}{20} - \frac{4}{20} = \frac{6}{10}$	A1		PI Any form
	So c is 4 more than 16, $c = 20$	A1		Completed by any method CAO
	Alternative, by use of area			
	$0.5 \times (0.05 + 0.1) \times 8 + [(c - 16) \times 0.1 =$ 1] 0.6 + [(0.1c - 1.6) = 1]	(M1) (A1)		For first area For first area = 0.6
	Leading to $c = 20$	(A1)		CAO
			3	
(ii)	19	B1		CAO
(6)			1	
(d)	$\int_{8}^{m} \frac{1}{160} x dx = 0.5$	M1		Complete including limits and = 0.5 Or use of F(<i>x</i>) derived in part (a)
	$\left[\frac{1}{320}x^2\right]_{8}^{m} = \frac{1}{320}[m^2 - 8^2] = 0.5$	A1		Equation correct in any form
	$m^2 - 8^2 = 160$, $m^2 = 224$			
	Median = √224 = 4√14 = 14.96	A1		Surd or AWFW 14.9 to 15.0 NB not 15 exactly by using $f(x)$ =0.1 backwards from $x = 16$
			3	
		Total	7	

Q2	Solution	Marks	Total	Comments
(a)	P(X = 10) = 0.001 shown by one of the			
	following			AG
	40			10
	by using $(0.5)^{10} = 0.000976 = 0.001$ to 3 dp			(0.5) ¹⁰ or 0.000976 seen
	\mathbf{O} = Using $\mathbf{D}(10, 0.5)$ by			
	Dr Using B(10, 0.5) by $D(Y = 10) = D(Y < 10) = D(Y < 0) = 1.000$			Not simply stating $P(Y-10) = 0.001$
	P(X = 10) = P(X = 10) - P(X = 9) - 1.000 - 0.000			Not simply stating $P(\lambda = 10) = 0.001$
	0.999			
	Or Using $P(X = 9) = 10 \times (0.5)^{10}$ or 0.00976 or	B1		
	(0.9990 - 0.9893) and then subtraction from 1			
		B1		CAO seen anywhere
	P(X = 9) = 0.010			
			2	
(b)(i)				Or equivalent in £. Their '0.01' but
	Mean prize = (50 × 0.044 + 200 × '0.01' +	M1		must use (0 and) 50/0.5, 200/2 &
	800 × 0.001)			800/8
				AWEW 49 to 50 Allow without
	= 5p (4.93p from exact values)	A1		working for B2
	In paper: $E(Y^2) = 50^2 \times 0.044 + 200^2 \times (0.01^2)$	N/1		Their '0.01' but must use 50, 200 &
	$+ 800^2 \times 0.001 (- 1150)$			800
	$Var(X) = "1150" - "5"^2$	m1		
	$= 1125 \text{ so SD} = \sqrt{1125} = 33.5$	A1		Their $E(X^{e})$ and their mean
				AVVEVV 33 to 34 AG
	In pounds: $E(X^2) = 0.5^2 \times 0.044 + 2^2 \times 0.01^2$			
	$+8^2 \times 0.001 (= 0.115)$	(M1)		Their '0.01' but must use $0.5.2 \& 8$
	$Var(X) = "0.115" - "0.05"^2$	(m1)		Their $E(X^2)$ and mean
	$= 0.1125 \text{ so } \text{SD} = 0.1125 = \pm 0.335$	(A1)		AWFW £0.33 to £0.34 do not
	[= 33.5p]			condone omission of £ sign if left as
	[SC] Use of $F(X - u)^2$ must include $(-5)^2 x$			0.335 AG
	$0.945 + 45^2 \times 0.044 + 195^2 \times (0.01' + 795^2 \times 10^{-1})$			
	0.001 OE for M1m1]			
			5	
(ii)	Doubling the prizes would make the expected			
	prize 10p ('= charge for the game' or			
	doubled')	B1		AVVEVV 9.8 10 10
	Or the standard deviation 67p (or doubled)	Ы		
				Do not award E1 if $E(2X) \neq 9.8$ to 10
	Because cost = expected prize			OE – concept of fairness
	this would be a fair game,	E1		Either OE – concept of zero profit
			2	
			<u> </u>	
		Total	9	

Q3	Solution	Marks	Total	Comments
(a)	H ₀ : There is no association between main	D.		
	course and dessert chosen.	B1		Allow independent
			1	
(b)				
. ,		B2 1		B1 for any one correct
		D2, 1		B2 for all four correct
	G 15.6 14.3			
	0 10.0 14.0		2	
			2	
(c)	$X^{2} \text{ value} = \frac{\frac{8.8^{2}}{27.2} + \frac{0^{2}}{16} + \frac{(-3.2)^{2}}{19.2} + \frac{(-5.6)^{2}}{17.6} + \frac{(-2.7)^{2}}{35.7} + \frac{3^{2}}{21} + \frac{1}{21} + \frac{1}{2$	M1		Any one fraction or decimal correct Possibly implied by correct X ² value
	$\frac{2.8^2}{25.2} + \frac{(-3.1)^2}{23.1} + \frac{(-6.1)^2}{22.1} + \frac{(-3)^2}{13} + \frac{0.4^2}{15.6} + \frac{8.7^2}{14.3}$ $= 2.84(7)+0 + 0.53+1.78+0.20+$			
	0.42(9)+ 0.31+0.41(6)+1.68+ 0.69+ 0.01+ 5.29	A1		At least 11 (or 10, excluding 0) correct to at least 2 dp. (ie 1 slip allowed) Possibly implied by correct X^2 value.
	= 14.2	A1		AWRT
	$3 \times 2 = 6$ degrees of freedom Critical value = 12.592	B1		AWRT 12.6
	14.2 > 12.6 so reject H_0	A1dep		Dep on TS and CV both correct. Comparison stated or diagram Accept $X^2 > cv$
	There is (significant evidence of) an association between main course and dessert chosen.	A1dep		Dep on previous A1. Conclusion in context, must refer to association or dependence.
			6	
(d)	More than expected beef eaters chose fruit salad More than expected vegetarians chose gateau Fewer than expected beef eaters chose gateau Fewer than expected vegetarians chose fruit	E1		For any one of these
<u> </u>			1	
		Total	10	
				1

Q4	Solution	Mark s	Total	Comments
(a)(i)	Using Po(2.7)	M1		Stated or implied
	$e^{-2.7} \times \frac{2.7^2}{2} = 0.245$	A1		AWRT
			2	
(a)(ii)	Use of Po(9)	M1		Must see use of 0.0550, 0.1157, 0.2068,0.5874, 0.7060 or 0.8030 to at least 3 sf
	0.7060 used as P(X ≤ 10)	A1		AWRT 0.706. Stated or implied by final answer
	Subtraction of 0.0550 from a top value (0.5874, 0.7060 or 0.8030)	m1		AWRT 0.055. Stated or implied by final answer (0.532, 0.651 or 0.748)
	0.7060 - 0.0550 = 0.651	A1		AWRT
			4	
(b)(i)	0.785	B1		AWRT
			1	
(b)(ii)	$0.2019 \times (1 - 0.5697)$ (= 0.0869)	M1		Allow 3 dp rounding
	(+) $0.0907 \times (1 - 0.7834)$ (= 0.0196)	M1		Allow 3 dp rounding
	= 0.1065	A1		AWFW 0.106 to 0.107
			3	
		Total	10	

Q5	Solution	Marks	Total	Comments
(a)	(E(Y) = 2E(X) - 5 so) = E(X) = 8	B1		CAO
	$(Var(Y) = 4Var(X) \text{ so }) Var(X) = \frac{3}{4}$	B1		CAO any equivalent form
			2	
(b)(i)	$\frac{(b-a)^2}{12} = \frac{3}{4}$	M1		Application of formula (their ³ / ₄)
	$(b-a)^2=9$			
	so $(b-a) = (\pm)3$	A1		Ignore –3 at this stage. No FT here.
	$\frac{(b+a)}{2} = 8$ (so $(b+a) = 16$)	M1		Application of formula (their 8) PI by final answer
	a = 6.5, b = 9.5	A1		CAO For both in any form. If there are extra solutions then A0.
			4	
(ii)	Use of $\frac{9-6.5}{3}$	M1		Or by subtraction $1 - \frac{0.5}{3}$
	$\frac{-}{6} = (0.833)$	A1		CAO Any equivalent form
			2	
		Total	8	

Q6	Solution	Marks	Total	Comments
(a)(i)	Mid interval value = mean = 1.64	B1		CAO
			1	
(a)(ii)	Use of t_9 value 2.262	B1		AWRT 2.26
	$2.262 \times \frac{s}{\sqrt{10}} = 0.23$	M1		Or 2 × and 0.46
	$s = \sqrt{10 \times 0.23} \div 2.262 = 0.3215$ (= 0.322)	A1		Arithmetic indicated or 4 sf answer AG Use of 2.26 gives 0.3218
			3	<u> </u>
(b)	Use of t_9 value 1.833 1.64 ± 1.833 × $\frac{0.322}{2}$	B1		0.000 - 0.0045 0.00
	√10 = (1.45, 1.83)	A1		AWRT 1.83
			3	
(c)				Follow through as long as the c.i. in part (b) excludes 1.85
	1.85 is outside the 90% interval but it/1.85 is inside the 95% interval.	B1F		OE Must compare 1.85 with each interval. Any 'it' must be unambiguous. Numerical comparison alone is not sufficient. (Eg. 1.85>1.83, and 1.81 <1.85 <1.87)
	Eg. Cannot decide whether suitable or not Or More samples needed Or Low probability of being suitable for mining	E1dep		Dep on B1F. Must make an overall statement which is inconclusive about suitability, even if two individual comments about uncertainty have already been given. Do not accept "suitable" or "not suitable" as a definite conclusion
				E0 if there is any suggestion that 95% c.i. is 'more accurate'.
			2	
		Total	9	

Q7	Solution	Marks	Total	Comments
(a)(i)	H ₀ : μ = 334, H ₁ : μ < 334 Sample mean = 320.8 Use of <i>z</i> value (±) 1.6449	B1 B1 B1		Both (here or in (ii)) CAO (here or in (ii)) ignore notation AWFW 1.64 to 1.65
	test stat = $320.8 - 334$ (17 ÷ $\sqrt{5}$)	M1		Ignore sign here
	= -1.736	A1		AWRT -1.74
	Reject H ₀ (or accept H ₁), because $-1.736 < -1.6449$ or $1.736 > 1.6449$ or diagram or ts < cv or ts > cv Significant evidence that the mean collection time has reduced.	A1dep E1dep		Condone inconsistency between diagram and numerical statement Dep on A1 and <i>z</i> value B1 Dep on A1 and <i>z</i> value B1 (but not on A1dep) In context, must refer to 'mean' and 'time' or 334 minutes. Must not be too definite.
			7	
(a)(ii)	(H ₀ : μ = 334, H ₁ : μ < 334) (sample mean = 320.8 and) <i>s</i> = 15.89 <i>t</i> ₄ = −2.132 test stat = $320.8 - 334$ (15.90 ÷ √5) = −1.857 No significant evidence that the mean collection time has reduced.	B1 B1 M1 A1 E1dep		AWRT 15.9 AWRT –2.13 Do not ignore sign here. Allow their s. AWFW –1.85 to –1.86 Dep on A1 and t value B1. In context must refer to 'mean' and 'time' or 334 minutes. Accept in terms of mean being unchanged
			F	Must not be too definite.
(b)	(a)(ii) 8 Type II error		5	CAO
(u)			1	
			1	
		Total	13	

Alternatives for those using critical values of time

a(i)	cv = $334 - 1.6449 \times 17 \div \sqrt{5}$ = 321.5 Comparison 320.8 < 321.5, so reject H ₀	M1 A1 A1dep	Condone 1.28 or 1.96 for 1.65 for M1 AWRT Dep on A1 and <i>z</i> value B1
a(ii)	$cv = 334 - 2.132 \times 15.90 \div \sqrt{5}$ = 318.8 Comparison 318.8 < 320.8, so accept H₀ etc.	M1 A1 A1dep	Condone 1.53 or 2.77 for 2.13 for M1 AWRT Dep on A1 and <i>t</i> value B1.

Condone 1.28 or 1.96 for 1.65 for a(i) ci = 320.8 ± 1.6449 × 17 ÷ √5 M1 M1 = (308.3) to 333.3 A1 AWRT Comparison 333.3 < 334, so reject H_0 A1dep Dep on A1 and z value B1 a(ii) Condone 1.53 or 2.77 for 2.13 for ci = $320.8 \pm 2.132 \times 15.90 \div \sqrt{5}$ M1 M1 = (304.6) to 337.0 A1 AWRT Comparison 334 < 337.0, so accept H_0 etc. A1dep Dep on A1 and *t* value B1.

Alternatives for those using confidence interval approach

Alternatives for those using *p* value approach

Q7	Solution	Marks	Total	Comments
(a)(i)	H ₀ : μ = 334, H ₁ : μ < 334 Sample mean = 320.8	B1 B1		Both (here or in (ii)) CAO (here or in (ii))
	test stat = $\frac{320.8 - 334}{(17 \div \sqrt{5})}$	M1		Ignore sign here PI by correct <i>p</i> value
	= -1.736	A1		AWRT -1.74 PI by correct <i>p</i> value
	Giving a <i>p</i> value of 0.0413 (or 0.0826)	A1		AWRT
	Correct comparison $0.0413 < 0.05$ (or $0.0826 < 0.1$), so reject H ₀	A1dep		Or diagram Dep on A1 and <i>z</i> value B1
	Significant evidence that the mean collection time has reduced.	E1dep		Dep on A1dep. In context, must refer to 'mean' and 'time' or 334 minutes. Must not be too definite.
			7	
(a)(ii)	$(H_0: \mu = 334, H_1: \mu < 334)$ (sample mean = 320.8 and) s = 15.89	B1		AWRT 15.9
	test stat = $320.8 - 334$ (15.90 ÷ $\sqrt{5}$)	M1		
	= -1.857	A1		AWFW –1.85 to –1.86
	Giving a <i>p</i> value of 0.0684 (or 0.137)	A1		AWRT
	No significant evidence that the (mean) collection time has reduced.	E1dep		Dep on <i>p</i> value A1. In context must refer to 'mean' and 'time' or 334 minutes. Accept in terms of mean being unchanged. Must not be too definite.
			5	
(b)	(a)(ii) & Type II error.	E1		CAO
			1	
		Total	13	

Q8	Solution	Marks	Total	Comments
(a)	$F(2) = \frac{15}{80}$	B1		This fraction OE seen or implied by correct answer
	$P(X > 2) = 1 - F(2) = \frac{13}{16} (= 0.8125)$	B1		Any equivalent fraction or 0.812, 0.8125, 0.813.
			2	
(b)	Differentiate to get $f(x) = \frac{1}{20}x^3$	B1		
	$E(Y) = \int_{1}^{3} \left(\frac{1}{x}\right) \left(\frac{1}{20}x^{3}\right) dx = \int_{1}^{3} \frac{1}{20}x^{2} dx$	M1		Allow omission of limits for M1
	$= \left[\frac{x^3}{60}\right]_1^3 = \frac{26}{60}$	A1		Any equivalent form or at least 3sf
	$E(Y^2) = \int_1^3 \left(\frac{1}{x^2}\right) \left(\frac{1}{20}x^3\right) dx = \int_1^3 \frac{1}{20}x dx$	M1		Allow omission of limits for M1
	$= \left[\frac{x^2}{40}\right] \frac{3}{1} = \frac{1}{5}$	A1		Any equivalent form
	$Var(Y) = \frac{1}{5} - \left(\frac{26}{60}\right)^2 = \frac{180}{900} - \frac{169}{900}$	M1		Their $E(Y^2)$ and $E(Y)^2$ but at least one must be correct
	$=\frac{11}{900}$	A1		Or exact equivalent or AWRT 0.0122
			7	
		Total	9	